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ABSTRACT 1 
Prior investigations of the “Eco-Approach and Departure (EAD)” connected vehicle application 2 
have shown the potential for energy savings for the vehicle when driving through signalized 3 
intersections. These previous works have relied on constructing complex traffic microsimulation 4 
models or conducting real-world field tests to estimate energy savings. In this paper, a 5 
computationally fast and reasonably accurate methodology to estimate potential energy savings 6 
from EAD for trucking applications is presented. The proposed methodology enables corridor- or 7 
road network-level energy saving estimates using only road length, speed limit, and travel time at 8 
each intersection as inputs. This technique was validated using EAD performance data from traffic 9 
microsimulation models of four trucking corridors in Carson, California, and the estimates of 10 
energy savings using the proposed methodology were within an average error of -1%. The 11 
validated models were subsequently used to estimate potential energy savings from EAD along 12 
truck routes in Carson.   13 
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INTRODUCTION 1 

Transportation activities, including the movement of people and goods by cars, trucks, trains, and 2 
other vehicles, account for 26% of energy consumption in the U.S., with 50-60% from passenger 3 
transportation and 40-50% from freight transportation. Consequently, transportation is responsible 4 
for 28.2% of the U.S. greenhouse gas (GHG) emissions, the largest share among all the sectors that 5 
include electricity, industry, commercial & residential, and agriculture (1). As connected and 6 
automated vehicle (CAV) technologies rapidly advance, there has been significant interest in using 7 
these technologies to help reduce energy consumption and GHG emissions from the transportation 8 
sector (2). For example, a number of connected eco-driving applications have been developed to 9 
improve the energy efficiency of individual vehicles and traffic as a whole via vehicle-to-vehicle 10 
(V2V) or vehicle-to-infrastructure (V2I) coordination, including Eco-Approach and Departure 11 
(EAD) at Signalized Intersections, Eco-Traffic Signal Timing, Eco-Lanes Management, etc. (3). 12 
Among them, the EAD at Signalized Intersections application has been widely studied due to its 13 
significant energy savings potential (4-6). With the EAD application, the equipped vehicle would 14 
be able to follow the most energy-efficient trajectory for passing through a signalized intersection 15 
that is calculated using the current speed of the vehicle measured by the speedometer, distance to 16 
the intersection measured by the Global Positioning System (GPS), Signal Phase and Timing 17 
(SPaT) messages from the traffic signal controller, and surrounding traffic information detected by 18 
on-board sensors such as radar or camera. 19 

In the last decade, many studies have been conducted to evaluate the energy savings and emissions 20 
reduction potential of EAD application under a variety of scenarios—from a simple scenario, such 21 
as fixed-time signals without traffic, to a more complex setup that comprises actuated signals in 22 
different traffic conditions. As shown in Table 1, these studies used different methods in the 23 
evaluation of energy savings and emissions reduction benefits of EAD application, including 24 
numerical simulation, traffic microsimulation, or field experiment. Among the three methods, 25 
numerical simulation (4,7-10) is relatively easy to conduct, but it only simulates the EAD-equipped 26 
vehicle without consideration of other vehicles on the road. This limitation can be addressed by 27 
using traffic microsimulation (6, 11-12) tools where different driving and traffic scenarios can be 28 
simulated to replicate real-world conditions. However, the evaluation of EAD application using 29 
traffic microsimulation tools is complex and time-consuming, involving the coding, calibration, 30 
and validation of the simulation model as well as the implementation of EAD algorithms into the 31 
simulation model through Application Programming Interface. Lastly, the evaluation of EAD 32 
application through field experiment (5, 13-14) is expensive, and thus, is often conducted for a 33 
limited number of intersections and corridors. Also, the energy and emissions benefits of EAD 34 
heavily depend on intersection and corridor characteristics, such as speed limit and length of the 35 
road upstream of the intersection, and thus, the benefits of EAD measured at one intersection or 36 
corridor may not be applicable to others. 37 

 38 

TABLE 1 Summary of EAD Algorithms and Evaluation Methods from Select Studies 39 

 40 

Study Authors and Year EAD Algorithm Evaluation Method 

Rakha et al. (2011) (7)  Fuel as the optimization 
objective 

Numerical Simulation 
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Mahler & Vahidi (2012) (8)  Signal phase prediction 
model 

Numerical Simulation 

Xiang et al. (2015) (9)  Driver behavior 
adapted eco-driving 

Numerical Simulation 

Kamalanathsharma et al. (2016) (10)  Multi-stage dynamic 
programming 

Numerical Simulation 

Ye et al. (2019) (4)  Neural network based 
prediction 

Numerical Simulation 

Xia et al. (2013) (11)  Adapted for different 
congestion levels 

Traffic Microsimulation 

Li et al. (2016) (6)  Drivers make control 
based on alerts 

Traffic Microsimulation 

Esaid et al. (2021) (12) Machine 
learning-based method 

Traffic Microsimulation 

Muñoz-Organero & Magaña (2014) (13)  Design optimal 
deceleration patterns 

Field Experiment 

Stahlmann et al. (2017) (14)  Green light optimal 
speed advisory 

Field Experiment 

Hao et al. (2018) (5)  Rule-based method for 
actuated signals 

Field Experiment 

 1 

The objective of this research is to develop a new methodology that will allow for a 2 
computationally fast and reasonably accurate estimation of the energy savings potential of EAD. 3 
To achieve the research objective, a lookup table-based method is proposed where the lookup table 4 
stores the numerical relationships between vehicle energy consumption and key parameters in 5 
EAD operation, such as upstream and downstream link distance. These relationships replace the 6 
runtime computation in numerical simulation or traffic microsimulation with a faster array 7 
indexing operation. Similar methods (15) have been widely used in other research fields due to the 8 
vast savings in processing time and the ability to store pre-calculated relationships for use in the 9 
execution of a model. Using the proposed method, one can quickly estimate the corridor- or road 10 
network-level energy savings potential of the EAD application using only road length, speed limit, 11 
and travel time at each intersection as inputs. The estimation results can be used to select 12 
intersections for detailed evaluation in traffic microsimulation or prioritize intersections for field 13 
implementation.  14 

To develop the estimation method, data generated from an extensive traffic microsimulation of an 15 
EAD application for heavy-duty trucks on real-world corridors in Carson, California, were used. 16 
First, two lookup tables (one for the baseline scenario and the other for the EAD scenario) were 17 
created that compiled upstream distance, downstream distance, average travel time, and energy 18 
consumption for the individual intersections. Then, each lookup table was used to build an 19 
estimation model, which was later calibrated based on the ratio between the actual and estimated 20 
energy consumption. Using the calibrated models, the energy consumption for both the baseline 21 
and EAD scenarios at each intersection can be estimated, and subsequently, the energy savings can 22 
be calculated. 23 
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METHODOLOGY 1 

In this section, we first briefly describe the EAD application for heavy-duty trucks that we 2 
previously developed and implemented in traffic microsimulation models of four real-world 3 
trucking corridors in Carson, California, to evaluate the energy savings potential of EAD for 4 
trucking applications (16). After that, we describe the development, calibration, and validation of 5 
the energy consumption estimation lookup table using data generated from the traffic 6 
microsimulation models.  7 

 8 

EAD Simulation 9 

As shown in the system diagram in Figure 1, the EAD application as implemented in traffic 10 
microsimulation models has both online components and offline components. The online 11 
components are implemented in real time. At each time step, the system first collects required data 12 
from multiple sources, including SPaT information, activity data from preceding vehicles, 13 
dynamic state of the host vehicle, and infrastructure data such as speed limit, road grade, 14 
communication range, etc. If the system does not receive all the required data or the situation is not 15 
safe enough to perform speed control (e.g., there is another vehicle right in front of the host 16 
vehicle), the EAD application will be turned off and return the control to the default controller in 17 
simulation. Otherwise, it will proceed to conduct trajectory planning and speed control for the 18 
virtual host vehicle. 19 

As the key component in the EAD application, the trajectory planning algorithm designs the 20 
optimal speed profile for the host vehicle to pass through the intersection with minimum energy 21 
consumption without compromising safety and mobility. To address the unique vehicle dynamic 22 
and powertrain characteristics of trucks in the algorithm, we first train the algorithm using 23 
calibrated acceleration and deceleration profiles and power-based cost table. Those data are fed 24 
into the graph-based trajectory planning algorithm first to generate a pool of optimal trajectories 25 
for all combinations of starting and ending states. Then, a machine learning-based trajectory 26 
planning algorithm (MLTPA) is developed and trained to provide a fast and accurate speed 27 
recommendation in real time based on the pool of optimal trajectories. 28 
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 1 
FIGURE 1 System diagram of the EAD application 2 

 3 

In the graph-based trajectory planning algorithm, the cost function of the graph is defined as the 4 
tractive power of the truck at a certain speed and acceleration rate. When road grade is zero, the 5 
coasting acceleration rate is defined as: 6 

𝑎𝑐𝑜𝑎𝑠𝑡 = −𝜇𝑔 −
1

2𝑚
𝐶𝐷𝜌𝑎𝐴𝑓𝑣𝑖

2 

 

(1) 

where 𝜇, g, m, 𝐶𝐷, 𝜌𝑎, 𝐴𝑓, 𝑣𝑖  are defined as rolling resistance coefficient, gravity, mass of the 7 
truck, drag coefficient, reference area, and speed, respectively. 8 
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When the truck is in a coasting or braking mode, i.e. 𝑎 ≤  𝑎𝑐𝑜𝑎𝑠𝑡, the tractive power is equal to 0. 1 
Otherwise, the truck is in traction mode (𝑎 >  𝑎𝑐𝑜𝑎𝑠𝑡), and the tractive power is calculated as: 2 

𝑃 = (𝑚𝑎 + 𝜇𝑚𝑔 +
1

2
𝐶𝐷𝜌𝑎𝐴𝑓𝑣𝑖

2) 𝑣 (2) 

Using the single intersection microsimulation models and the online EAD model, the single 3 
intersection trajectory datasets are generated and fed into the energy benefit estimation model, as 4 
discussed in the next section. 5 

 6 

Energy Benefit Estimation Model 7 

 8 

Unit Intersection Lookup Table 9 

Many parameters are related to energy consumption in the proposed EAD model, e.g. starting and 10 
ending location with respect to the intersection, the SPaT information, the speed limit, and the 11 
traffic condition, etc. The upstream distance (lu) determines the maximum distance of which the 12 
eco-driving could be initiated. If lu is smaller than the communication range of the connected 13 
signal, the host vehicle will start eco-driving as soon as it enters the intersection. Otherwise, the 14 
host vehicle will drive unconnectedly until it enters the communication range. The second 15 
parameter that is important in the EAD model is the downstream distance (ld), which describes 16 
how far the vehicle could drive after passing the intersection. ld constraints the target speed the 17 
vehicle could reach at the end of the network, therefore impacts the energy consumption of the 18 
model. Both distance measures are critical in EAD model and are convenient to acquire from the 19 
geographic database. The speed and time-related parameters are also significant in the EAD 20 
process. For example, when the traffic is congested, the eco-driving will not be able to be 21 
effectively performed due to the close gap between the host vehicle and the leading vehicle. When 22 
the traffic signal has a longer red-light phase, the host vehicle will be more likely to slow down due 23 
to the signal and queue. When the city engineers are estimating potential energy benefits by 24 
enabling certain connected signals, we would like the process to be fast and relatively accurate. 25 
Although all these parameters are important in estimating the energy consumption, we only choose 26 
the travel times along with upstream/downstream distances in the lookup table as they are easier to 27 
be measured and obtained, other parameters, such as the traffic signal timing and traffic condition, 28 
are difficult to acquire or estimate in a real-time manner. 29 

We create two lookup tables (one for baseline, and one for eco-driving) where the Energy 30 
consumption (E) for each (t, lu, ld) combination in the single-intersection simulation was listed. 31 
The two lookup tables can be summarized as two functions below:  32 

 33 

 E = Ee(te, lu, ld ) for eco-driving case, 
E = Eb(tb, lu, ld ) for baseline case. 

(3) 

The single-intersection simulation provides the simplest EAD scenario, from which different (t, lu, 34 
ld ) combinations could be extracted from. Later, the corridor with multiple intersections could be 35 
split into single intersections, calculated separately, and added together for total energy 36 
consumption and benefit estimation. 37 
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Lookup Table Calibration 1 

The lookup table in the previous step is obtained by running microsimulations of a single 2 
intersection network. The network is designed to have large enough lu and ld (both 1500m) so that 3 
the lookup table could cover all conditions of the real-world intersections. However, such a lookup 4 
table might not work when the network is extended to corridors of multiple intersections with 5 
different lengths of lu and ld, especially when the intersections are closely spaced. When the lu or ld 6 
is small, vehicles usually prepare to decelerate before they reach the desired speed, causing a 7 
smaller average speed and longer travel time. The actual energy consumption is usually less than 8 
the estimated value from Ee or Eb.  9 

To calibrate the adjustment factor R (defined as the ratio between the actual energy and the 10 
estimation), we first used corridor simulation data from two corridors as training sets and collected 11 
actual energy consumption data for each link. We then estimate the energy consumption at 12 
corresponding links from the single-intersection simulation dataset. According to the link distance 13 
(short or long) and driving mode (eco-drive or baseline), data were categorized into four groups. 14 
Here short links are defined as links in which lu ≤ 100m, and long upstream links are defined as 15 
links in which lu > 100m. The adjustment factor R between actual and estimation for certain link 16 
length type and driving mode is then calculated as below: 17 

 18 

𝑅 =
∑ 𝐸𝑎𝑐𝑡𝑢𝑎𝑙𝑖

𝑘
𝑖=1

∑ 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑖

𝑘
𝑖=1

 

 

(4) 

where k is defined as the number of signals with the same link length type and driving mode. 19 

 20 

Scenario and Input Identification 21 

For a real-world corridor, divide it into links. We define the link length dij as the distance between 22 
the stop line of the upstream intersection i and downstream intersection j, downstream distance of 23 
intersection i (defined as ldi) and upstream distance of intersection i (defined as luj) are then defined 24 
below: 25 

if dij ≥ 1300: ldi = 900; luj = dij - ldi; 26 

 else if dij ≥   400: ldi = 425; luj = dij - ldi; 27 

 else:    ldi = dij -25; luj = 25; 28 

The baseline travel time for each link can be either derived from sample truck trajectory data, 29 
estimated by the equations in Highway Capacity Manual (HCM) or looked up from the historical 30 
travel time in Google Map Application Programming Interface (API). Since the link travel times 31 
for eco-drive scenarios are similar to corresponding baseline cases, we used the same travel time 32 
for both baseline and eco-driving on the same network. For baseline scenarios, all the intersections 33 
are non-connected. For eco-drive scenarios, intersections can be connected or non-connected, 34 
according to the implementation plan. 35 

 36 
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Energy Benefit Estimation 1 

For each link in the real-world corridor, the estimated energy consumption under the baseline 2 
scenario is  3 

 4 

 
𝐸𝑖,𝑏 = {

𝑅𝑠ℎ𝑜𝑟𝑡,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝐸𝑏(ti, 𝑙𝑢𝑖, 𝑙𝑑𝑗)    𝑖𝑓 𝑙𝑢𝑖 ≤ 100𝑚

𝑅𝑙𝑜𝑛𝑔,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝐸𝑏( ti, 𝑙𝑢𝑖, 𝑙𝑑𝑗)       𝑖𝑓 𝑙𝑢𝑖 > 100𝑚
  

 

(5) 

where R is calculated from Step 2 using the grouped training data. The equations above are also 5 
applicable to the links with non-connected signals for eco-drive scenarios. For links with 6 
connected signals, the estimated energy consumption under the eco-drive scenario is 7 

 8 

 
𝐸𝑖,𝑒 = {

𝑅𝑠ℎ𝑜𝑟𝑡,𝑒𝑐𝑜 × 𝐸𝑒( ti, 𝑙𝑢𝑖, 𝑙𝑑𝑗)    𝑖𝑓 𝑙𝑢𝑖 ≤ 100𝑚

𝑅𝑙𝑜𝑛𝑔,𝑒𝑐𝑜 × 𝐸𝑒( ti, 𝑙𝑢𝑖, 𝑙𝑑𝑗)      𝑖𝑓 𝑙𝑢𝑖 > 100𝑚
 

 

(6) 

After calculating the energy consumption of single intersections of a corridor, the total baseline 9 
energy consumption is the summation of all the calibrated energy values and the energy benefit is 10 
then calculated correspondingly. 11 

 
𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑖

𝑛

𝑖=1

 

 

(7) 

 
𝐸𝑠𝑎𝑣𝑖𝑛𝑔 = 1 −

𝐸𝑡𝑜𝑡𝑎𝑙,𝑒

𝐸𝑡𝑜𝑡𝑎𝑙,𝑏
 (8) 

RESULT 12 

 13 

In this section, we first show the results of unit intersection simulation. Then, we validated the 14 
proposed estimation method using the traffic microsimulation-generated data from four real-world 15 
corridors in Carson, California. Lastly, the validated models were applied to estimate the potential 16 
energy savings from the EAD application for the entire truck route network in the city of Carson.  17 

 18 

Unit Intersection Simulation 19 

As mentioned in the methodology section, a single-intersection simulation network with 1500m lu 20 
and ld was built in VISSIM to create the lookup table of the energy consumption correspondence. 21 
To understand the impact of each parameter on the performance of the EAD algorithm, we plot the 22 
energy consumption v.s. lu and ld when travel time is set to be 100 sec, as shown in Figure 2. As can 23 
be seen from Figure 2(b), when ld and t is constant, the total energy consumption decreases as lu 24 
increases. This is because the vehicle tends to slow down before the intersection and accelerate 25 
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after passing the intersection when lu is small, causing extra energy consumption in the 1 
acceleration process.  We can also see that when lu and t is constant, the total energy consumption 2 
increases as ld increases. This is because the host vehicle spends more time accelerating to coasting 3 
speed when ld increases. As for energy benefit, Esaving ranges from 0% to 30%, increases as lu 4 
increases and decreases as ld increases. To explain this phenomenon, we can interpret Esaving using 5 
the formula below: 6 

 7 

𝐸𝑠𝑎𝑣𝑖𝑛𝑔 =
𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑢 + 𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑑 − 𝐸𝑡𝑜𝑡𝑎𝑙,𝑒,𝑢 − 𝐸𝑡𝑜𝑡𝑎𝑙,𝑒,𝑑

𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑢 + 𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑑
 

 

(9) 

where 𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑢  represents the total energy consumption for baseline in the upstream driving. 8 
When lu increases, the host vehicle can start eco-driving at an earlier stage, causing 𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑢 −9 
 𝐸𝑡𝑜𝑡𝑎𝑙,𝑒,𝑢 to increase while keeping 𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑑 −  𝐸𝑡𝑜𝑡𝑎𝑙,𝑒,𝑑 consistent, therefore 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 increases. 10 
Once the vehicle passes the intersection, the V2I communication will terminate and the connected 11 
vehicle will perform the same as the baseline vehicle. When ld increases, the numerator of formula 12 
9 remain unchanged while 𝐸𝑡𝑜𝑡𝑎𝑙,𝑏,𝑑 increases, therefore 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 decreases. 13 

Next, we plot the energy consumption v.s. lu and t when ld is set to be 500m, in Figure 3. As can be 14 
seen form Figure 3a and 3b, when ld and t is constant, 𝐸𝑡𝑜𝑡𝑎𝑙,𝑒 decreases as lu increases, which is 15 
similar to Figure 2. When ld and lu is constant, as t increases, 𝐸𝑡𝑜𝑡𝑎𝑙,𝑒  increases to a certain 16 
threshold before reaching constant. This is because when t is smaller than the threshold, the vehicle 17 
will spend less time decelerating and accelerating. When t is larger than the threshold, all the 18 
vehicles will have to stop at the intersection, therefore costing same 𝐸𝑡𝑜𝑡𝑎𝑙,𝑒 for proceeding the 19 
similar speed profile in downstream. 20 

Corridor Energy Benefit Estimation 21 

In the simulation scenario, we created a dataset for the single intersection simulation and estimated 22 
the raw energy consumption for each link in the four corridors, namely Wilmington North (WN), 23 
Wilmington South (WS), Alameda North (AN), and Alameda South (AS), as shown in Figure 4. 24 
The four corridors are located right next to the Port of Los Angeles and Port of Long Beach, the 25 
two busiest container ports in the United States. There are 11 and 8 signals in the Wilmington S/N 26 
and Alameda S/N corridors respectively, and each corridor has 5 connected signals as labeled in 27 
the figure. We adapted the signal timing and traffic condition from the real world and created a 28 
simulation environment in VISSIM. The baseline is controlled by VISSIM using the default driver 29 
model, and the eco-driving data is created using the EAD model mentioned in the background 30 
section. We employed an exhaustive cross-validation technique called leave-p-out cross-validation 31 
with p = 2. This involved using data from two corridors as the training set and validating the 32 
trained model against data from the remaining two corridors. The validation was repeated for all 33 
possible ways of splitting the training versus validation set. The result is shown in Table 2. 34 
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 1 
FIGURE 2 Energy Consumption and Energy Benefit for t = 100 sec. (a) Energy 2 

consumption for baseline. (b) Energy consumption for EAD. (c) Energy savings benefit 3 
((energy for baseline – energy for EAD) / energy for baseline) 4 
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 1 
FIGURE 3 Energy Consumption and Energy Benefit for ld = 500 meters. (a) Energy 2 

consumption for baseline. (b) Energy consumption for EAD. (c) Energy savings benefit 3 
((energy for baseline – energy for EAD) / energy for baseline) 4 
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 1 

 2 
FIGURE 4 Location of 4 corridors applied in the simulation 3 
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TABLE 2 Cross-validation result for the 4 corridors 1 

Training 
Set 

Test Set Real Benefit in % Benefit in % before 
Calibration (Error) 

Benefit in % after 
Calibration (Error) 

AN + AS WN  17.2 1.8 (-15.5) 11.1 (-6.2) 

WS 12.0 4.8 (-7.2) 11.7 (-0.3) 

AN + WN 

  

AS 7.6 11.1 (3.5) 10.5 (2.8) 

WS 12 4.8 (-7.2) 7.6 (-4.4) 

AN + WS AS 7.6 11.1 (3.5) 13.0 (5.3) 

WN 17.2 1.8 (-15.5) 7.2 (-10.0) 

AS + WN AN 6.2 6.4 (0.2) 5.3 (-0.8) 

WS 12.0 4.8 (-7.2) 6.4 (-5.6) 

AS + WS AN 6.2 6.4 (0.2) 8.4 (2.2) 

WN 17.2 1.8 (-15.5) 6.9 (-10.3) 

WN + WS AN 6.2 6.4 (0.2) 8.7 (2.5) 

AS 7.6 11.1 (3.5) 12.8 (5.2) 

 2 

The validation results show that the estimation error ranges from -10% to +5% with an average 3 
error of -1%. 5 out of 6 validation trials show a significantly better estimation result after the 4 
calibration factor is applied. The raw estimated energy turns out to be an overestimation for all 5 
dataset, which might be caused by the less traffic and higher average speed in the corridor 6 
simulation compared with the single intersection simulation. The proposed method can also make 7 
an accurate estimation for the energy consumption in both baseline and eco-driving with less than 8 
10% estimation error. Since the computation is based on several lookup tables, the computational 9 
time is less than 1 sec for each corridor and is fast enough for real-time applications. 10 

 11 

City of Carson Truck Route Energy Benefit Estimation 12 

We then applied the energy benefit estimation model to the truck route network in the city of 13 
Carson and estimated the potential energy savings using the EAD application. Below Figure. 5 is 14 
the truck routes and parking map in Carson, California, where 14 east-west and 10 north-south 15 
corridors are colored in yellow. To estimate the energy consumption and benefit for the corridors, 16 
we need to divide each corridor into links based on the traffic signals and calculate the travel time 17 
and upstream/downstream length for each link. Using Google Earth (Figure. 6), we locate all the 18 
traffic signals with their length on the corridor and note down the longitude and latitude of the 19 
beginning and end of each corridor. Then using Google Map Distance Matrix API, we collect the 20 
real time travel time data of the entire corridor using the longitude and latitude coordinates of the 21 
corridor. To adapt to the uncertain traffic conditions on the corridors, travel time data is collected 22 
every 15 mins for 7 days and then averaged into hourly data. Finally, the link travel time 𝑡𝐿𝑖

 is 23 
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calculated using the corridor travel time 𝑡𝑐 based on the speed limit 𝑣𝐿𝑖
 and the distance of each 1 

link 𝑑𝑖, shown as below: 2 

 

𝑡𝐿𝑖
= 𝑡𝑐 ×

𝑑𝑖

𝑣𝐿𝑖

∑ ∑
𝑑𝑗

𝑣𝐿𝑗

𝑛
𝑗=1

 

(9) 

With the travel time, distance, and the calibration factor calculated from the simulation study, the 3 
estimated energy consumption and EAD estimation are listed in Table 3 below. Note that some 4 
corridors with no traffic signal have been removed from the table. 5 

TABLE 3 Truck Route Energy Consumption and Saving 6 

 7 
The results show that the potential energy savings vary by the corridor, ranging from 1% to 25% 8 
with an average of 14%. The longest corridor, which is South Figueroa St, reaches an average 14% 9 
energy savings and 13.5 kWh/signal in 16 connected signals. The amount of savings is in accord 10 
with the number we calculated in the 4 simulated corridors, which proves that the proposed 11 
methodology is applicable to real world traffic scenarios. 12 

HorizontalName

1 Alondra Blvd 1.2                 8 3.6 2.9 -19%

3 E Walnut St 1.0                 4 2.2 1.7 -25%

5 Albertoni St 1.1                 10 3.6 3.3 -9%

6 E Victoria St 0.7                 4 1.6 1.3 -20%

7 W Victoria St 0.4                 4 1.5 1.5 -1%

8 Del Amo Blvd 4.5                 21 9.6 9.2 -4%

9 W Torrence Blvd 0.3                 4 1.2 1.2 -5%

10 E Carson St 1.9                 10 5.1 4.2 -17%

11 223rd St 4.8                 30 14.2 12.5 -12%

12 Sepulveda Blvd 3.7                 28 8.8 8.0 -9%

13 Lomita Blvd 1.3                 6 4.0 3.5 -11%

Vertical Name

1 S Figueroa St 6.1                 32 15.6 13.5 -14%

2 S Broadway 3.0                 14 8.4 6.7 -20%

3 S Main St (north) 1.4                 8 3.9 3.1 -20%

5 S Avalon Blvd (north) 1.0                 10 3.5 2.9 -16%

6 S Avalon Blvd (south) 1.4                 11 4.1 3.5 -17%

7 S Central Ave 0.7                 11 3.1 2.6 -16%

8 S Wilmington Ave 5.1                 31 15.6 13.6 -13%

9 Alameda St 3.4                 11 8.4 7.0 -17%

10 Santa Fe Ave 1.5                 12 4.5 3.5 -23%

 Corridor 

Length (mi) 

Baseline Energy 

(kWh)

Eco-driving 

Energy (kWh)

Energy 

Savings (%)
# Signals

 Corridor 

Length (mi) 

# Signals
Baseline Energy 

(kWh)

Eco-driving 

Energy (kWh)

Energy 

Savings (%)
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 1 
FIGURE 5 Truck Route and Parking Map in City of Carson 2 
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 1 
FIGURE 6 East-west (red) and north-south (blue) corridors in City of Carson from Google 2 

Earth 3 

 4 

CONCLUSION 5 

This paper presents a computationally efficient and accurate methodology for evaluating and 6 
estimating potential energy savings of using EAD along trucking corridors within cities. Using the 7 
road length, travel time, and speed limit at each intersection in the corridor, one can quickly 8 
estimate the corridor-level energy savings with customized connected or non-connected signal 9 
combinations. We validated the proposed estimation method using the traffic 10 
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microsimulation-generated data from four real-world corridors in Carson, California. The 1 
proposed method made an accurate estimation of the energy consumption in both the baseline and 2 
eco-driving cases with less than 10% estimation error, and the cross-validation results showed that 3 
the benefit estimation error ranges from -10% to +5% with an average error of -1%. This method 4 
could be used by city planners and engineers to estimate potential energy benefit when enabling 5 
certain connected signals and to decide which signals to prioritize for enabling connectivity. 6 

In our future work, we plan to apply the proposed methodology to different types of vehicles and 7 
roadway networks. Additional simulations will be performed to estimate energy savings benefit 8 
under different connected vehicle penetration rates. Real-world field tests will also be conducted to 9 
verify and improve the proposed algorithm.   10 

 11 

ACKNOWLEDGMENT 12 

This paper was prepared as a result of work sponsored by California Air Resources Board. The 13 
California Collaborative Advanced Technology Drayage Truck Demonstration Project is part of 14 
California Climate Investments, a statewide program that puts billions of Cap-and-Trade dollars to 15 
work reducing greenhouse gas emissions, strengthening the economy, and improving public health 16 
and the environment—particularly in disadvantaged communities. Funding is also provided by 17 
South Coast Air Quality Management District’s Clean Fuels Program, which since 1988 has 18 
provided over $320 million, leveraging $1.2 billion, to fund projects to accelerate the 19 
demonstration and deployment of clean fuels and transportation technologies through 20 
public-private partnerships. 21 

In addition, the authors would like to acknowledge California Energy Commission and Los 22 
Angeles County Metropolitan Transportation Authority for providing co-funding, as well as Los 23 
Angeles County Department of Public Works, City of Carson, City of Los Angeles Department of 24 
Transportation, Econolite, McCain, and Western Systems for their technical support. The opinions, 25 
findings, conclusions, and recommendations are those of the authors and do not necessarily 26 
represent the views of project sponsors or other team members. 27 

 28 

AUTHOR CONTRIBUTION STATEMENT 29 

The authors confirm contribution to the paper as follows: study conception and design: K. B., P. 30 
H., A. K., P. A., M. B.; data collection: Z.W., K. P., L. L., S. O.; analysis and interpretation of 31 
results: Z. W., P. H., K. B.; draft manuscript preparation: Z. W, P. H., K. B, A. K.. 32 

All authors reviewed the results and approved the final version of the manuscript. 33 

 34 

REFERENCES 35 

1. Inventory of U.S. Greenhouse Gas Emissions and Sinks. 36 
www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main37 
-text.pdf. 38 

2. Morrow, W. Ross, et al. "Analysis of policies to reduce oil consumption and greenhouse-gas 39 
emissions from the US transportation sector." Energy Policy 38.3 (2010): 1305-1320. 40 

3. CV Pilot Deployment Program. www.its.dot.gov/pilots/pilots_environment.htm. 41 



Wei, Hao, Kailas, Amar, Palmeter, Levin, Orens, Barth, Boriboonsomsin   20 
 

4. Ye, Fei, et al. "Prediction-based eco-approach and departure at signalized intersections with 1 
speed forecasting on preceding vehicles." IEEE Transactions on Intelligent Transportation 2 
Systems 20.4 (2018): 1378-1389. 3 

5. Hao, Peng, et al. "Eco-approach and departure (EAD) application for actuated signals in 4 
real-world traffic." IEEE Transactions on Intelligent Transportation Systems 20.1 (2018): 5 
30-40. 6 

6. Li, Weixia, et al. "Safety, mobility and environmental sustainability of eco-approach and 7 
departure application at signalized intersections: A simulation study." 2016 IEEE Intelligent 8 
Vehicles Symposium (IV). IEEE, 2016. 9 

7. Rakha, Hesham, and Raj Kishore Kamalanathsharma. "Eco-driving at signalized intersections 10 
using V2I communication." 2011 14th international IEEE conference on intelligent 11 
transportation systems (ITSC). IEEE, 2011. 12 

8. Mahler, Grant, and Ardalan Vahidi. "Reducing idling at red lights based on probabilistic 13 
prediction of traffic signal timings." 2012 American Control Conference (ACC). IEEE, 2012. 14 

9. Xiang, Xuehai, et al. "A closed-loop speed advisory model with driver's behavior adaptability 15 
for eco-driving." IEEE Transactions on Intelligent Transportation Systems 16.6 (2015): 16 
3313-3324. 17 

10. Kamalanathsharma, Raj Kishore, and Hesham A. Rakha. "Leveraging connected vehicle 18 
technology and telematics to enhance vehicle fuel efficiency in the vicinity of signalized 19 
intersections." Journal of Intelligent Transportation Systems 20.1 (2016): 33-44. 20 

11. Xia, Haitao, et al. "Development and evaluation of an enhanced eco-approach traffic signal 21 
application for connected vehicles." 16th International IEEE Conference on Intelligent 22 
Transportation Systems (ITSC 2013). IEEE, 2013. 23 

12. Esaid, D., Hao, P., Wu, G.., Ye, F., Boriboonsomsin, K., and Barth, M. (2021). “A machine 24 
learning approach to real time trajectory optimization at connected signalized intersections.” 25 
SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy, 26 
3(1). 27 

13. Muñoz-Organero, Mario, and Víctor Corcoba Magaña. "Validating the impact on reducing 28 
fuel consumption by using an ecodriving assistant based on traffic sign detection and optimal 29 
deceleration patterns." IEEE Transactions on Intelligent Transportation Systems 14.2 (2013): 30 
1023-1028. 31 

14. Stahlmann, Rainer, et al. "Exploring GLOSA systems in the field: Technical evaluation and 32 
results." Computer Communications 120 (2018): 112-124. 33 

15. Z. Wang, K. Han, B. Kim, G. Wu and M. J. Barth, "Lookup Table-Based Consensus Algorithm 34 
for Real-Time Longitudinal Motion Control of Connected and Automated Vehicles," 2019 35 
American Control Conference (ACC), 2019, pp. 5298-5303, doi: 36 
10.23919/ACC.2019.8815239. 37 

16. Hao, P., Wei, Z., Esaid, D., Williams, N., Kailas, A., Amar, P., Palmeter, K., Levin, L., Orens, 38 
S., Barth, M., and Boriboonsomsin, K. (2021). “Connected vehicle-based truck eco-driving: A 39 
simulation study”. Proceedings of the 24th International IEEE Conference on Intelligent 40 
Transportation Systems, Indianapolis, IN, September 19-22. 41 


